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Abstract—Pólya and others recognised that an appropriate
representation of a problem is key for enabling us to solve
it. But choosing the right representation is a problem that
novice problem solvers find difficult, so must turn to experts
for guidance. In this paper, we present a study that examines
how human experts recommend representations. We asked high
school mathematics teachers to order representational systems
based on their suitability generally, and with respect to a student
profile. We found the teachers updated their recommendations
based on the problem and student profile, but were inconsistent
with each other. This inconsistency highlights a need for more
training and support in representational system selection.

Index Terms—representations, experts, problem solving

I. INTRODUCTION

Problems appear everywhere, from everyday activities to
advanced mathematics. One general problem solving principle
is to formulate and transform the problem into a new representa-
tional system [1], [2], potentially providing new inferences ‘for
free’ [3]. But reformulating problems is a challenge, particularly
for non-experts [4]. Experts need to guide them, but are experts
consistent in their guidance? Does this guidance reflect the
problem, and the person solving it?

In this paper, we focus on mathematics education, specifically
high school level probability problems, for which diverse repre-
sentational systems (RSs) are a core part of the curriculum [5],
[6]. There is evidence that proper use of RSs in mathematical
problem solving can improve learning [7], [8]. This area is
also of particular interest since there is a ready supply of
experts – specifically mathematics teachers – from whom
we can gain insight into which RSs are suitable for which
problems and for which students. We have collected data from
mathematics teachers, and so compiled and analysed a dataset
of recommendations of RSs regarding which should be used
for certain probability problems for particular student profiles.

We found that teachers consider both the problem, and
the student. However, the resulting recommendations are
inconsistent: for the same problem and student profile, the
teachers’ recommendations can, in some cases, vary greatly.

This paper is organised as follows. Section II presents our
hypotheses, while Section III details the experimental design.
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Section IV provides details of our participants, and how the
experiment was conducted. We provide a quantitative analysis
of the participants’ responses in Section V, and a qualitative
analysis in Section VI. We discuss some limitations of our
experiment in Section VII, before concluding in Section VIII.

II. HYPOTHESES

We aim to determine whether experts, specifically secondary
school mathematics teachers, produce similar RS recommen-
dations. These recommendations should consider both the
problem being solved and the cognitive profile of the person –
in this case, a student – doing the solving. We ask them also
to consider their recommendations in the general case, with no
cognitive profile in mind. That is, they should consider what
the representational system is capable of expressing, not the
elegance with which it expresses it; this is the ‘informational
suitability (IS)’ of an RS.

We break down our high level goals into three hypotheses.

H1. From the teachers’ individual responses it is possible
to produce an overall ranking of RSs for each problem and
cognitive context.

That is, their responses should be at least partially consistent
with each other – they are all starting from the same problem
and cognitive situation (see the next two hypotheses), and they
are working within the same curriculum with a related cohort
of students mostly educated in that same curriculum. Thus we
would expect that the teachers’ responses would be sufficiently
similar that we can extract some RS ranking.

We expect that the teachers’ recommendations would change
based on the situation, too. Thus, we hypothesise that:

H2. The teachers’ aggregate RS recommendations change
based on the problem that they are considering.

Finally, the recommendation should also vary based on the
cognitive abilities of the student they are helping:

H3. The teachers’ aggregate RS recommendations change
based on the cognitive context (with IS only [no person in
mind], a low-ability student, or a high-ability student) that
they are considering.
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III. DESIGN

We designed the experiment in the context of New Zealand
mathematics students, aged 15–18. We chose the domain of
probability as there are a wide variety of potential RSs, and
the problems cover a range of difficulties.

A. Representational systems

We selected five diverse RSs for this study: AREA DIAGRAMS,
BAYESIAN ALGEBRA, CONTINGENCY TABLES, EULER DIAGRAMS, and
PROBABILITY TREES. Each is obviously distinct – there is no
confusion to which RS a particular representation belongs.
AREA DIAGRAMS use a unit square partitioned into regions with horizontal

and vertical lines, where the area of a region with edges labelled by
events X and Y represents the probability of X ∩ Y ; areas of disjoint
regions for events A and B sum to the probability of A ∪B.

BAYESIAN ALGEBRA is standard algebraic notation, augmented with two
probability functions Pr(·) and Pr(· | ·), conditional probability laws,
and Bayes’ Theorem.

CONTINGENCY TABLES use a grid of cells where the sum of all the values
in the table must be 1. The value in a cell in row X and column Y
contains the probability of X ∩ Y .

EULER DIAGRAMS represent events as contours (circles) and the overlap-
ping regions represent their conjunction. This RS cannot represent
the magnitude of most probabilities, so is unsuitable for any of our
problems. That is, we considered non-proportional EULER DIAGRAMS.

PROBABILITY TREES represent events as nodes in a rooted tree, and the
(directed) edges are labelled with conditional probabilities. Multiplying
along branches computes conjunction, while adding between branches
computes disjunction. Edge length and order are not meaningful.

Examples of each are in Appendix A. AREA DIAGRAMS were
included because this RS is not commonly taught in New
Zealand; we wished to see what effect an unfamiliar RS has
on the teachers’ responses.

B. Cognitive contexts

To evaluate the RSs, the teachers need to consider the
cognitive context that the RS will be used in. For this study,
we use three contexts: IS (i.e., without any student in mind), a
low-ability student context, and a high-ability student context.
We expect the teachers to adjust their responses based on the
cognitive contexts, addressing H3.

For the IS context, teachers were not given any persona
to consider when scoring the RSs. For the contexts involving
students, we provided two personas: Student A, a low-ability
15-year-old, and Student B, a high-ability 17-year-old. They
were chosen to be sufficiently distinct for teachers to update
their recommendation, if they choose. The precise wording of
the personas is in Appendix B.

C. Problems

We selected five typical probability problems to address H2:
1) 1% of the population has a disease. A test is reliable 98% if you have

the disease and 97% if you do not have the disease. Assuming the test
comes out positive, what is the probability of having the disease?

2) One quarter of all animals are birds. Two thirds of all birds can fly.
Half of all flying animals are birds. Birds have feathers. If X is an
animal, what is the probability that it’s not a bird and it cannot fly?

3) Let A, B be events, and Pr(A) = 0.2. We also have that Pr(B |
A) = 0.75 and Pr(A |B) = 0.5. Calculate Pr(Ā ∩ B̄).

4) There are two lightbulb manufacturers in town. One of them is known
to produce defective lightbulbs 30% of the time, whereas for the other
one the percentage is 80%. You do not know which one is which. You
pick one to buy a lightbulb from, and it turns out to be defective. The
same manufacturer gives you a replacement. What is the probability
that this one is also defective?

5) Let S, T , U be events. We have that Pr(S) = 0.5. We also have that
Pr(T |S) = Pr(U |S) = 0.1, and that Pr(T | S̄) = Pr(U | S̄) =
0.2. We assume that T and U are independent with respect to S, that
is Pr(T ∩ U |S) = Pr(T |S)× Pr(U |S). Calculate Pr(U |T ).

The first problem about medical testing was used as practice,
and always presented first; the rest were counterbalanced. The
responses for the first problem were discarded; the teachers
were not made aware of this.

Problems 2 and 3 are ‘equivalent’ – these contain the
same information and goal. Similarly, problems 4 and 5 are
‘equivalent’. The information content of the problem, and the
solution paths in each RS, would be identical for each pair.
The teachers were not informed of this until debriefing.

We categorise the final four as ‘easy’ or ‘hard’, and ‘verbal’
or ‘formulaic’. We use the abbreviations E, H, V, and F,
respectively, so problems 2 through 5 are EV, EF, HV, and HF.

D. Training

Because the teachers may not be familiar with our chosen
RSs – or understand the RSs differently – we provided training
on each. This consisted of going over a one-page PDF document
with the teachers; the RSs were introduced in a counterbalanced
order. The training documents are in Appendix D.

The training document for each RS contained a brief
description of the RS, along with four examples. The training
resources were kept uniform in what they described, and their
length: each described how the RS encoded the underlying
probability concepts such as events, ‘and’, and ‘or’, as well
as general syntactic rules. This ensured that no particular RS
was promoted as ‘better’ than the others. The examples were
a representation belonging to that RS, and a short textual
description of the representation. The teachers were asked to
explain how the text described the representation, and then
answer some brief questions about extracting information from
the representation. The correct answers were then given.

E. Tasks

The experiment was divided into two phases: in phase one,
the teachers assessed the IS of the RSs for each problem; in
phase two, they assessed the suitability of the RSs for each
problem for a specific student persona. For each problem and
cognitive context, the teachers were asked to arrange the RSs on
the online response form shown in Fig. 1. The teachers entered
their identification code, the problem, and cognitive context,
then dragged the labels of the RSs onto the central scale, 0
to 100. The labels all begin in the top row, can be dragged
anywhere, and may overlap. The boxes have a horizontal line
that connects to the central scale; the horizontal position has
no meaning, which the teachers were told. When they were
happy with their response, they clicked the ‘Save’ button, then
‘Reset’ to return the labels to the top row.



Fig. 1. A screenshot of the response form teachers used to score RSs.

For phase one – RSs suitability when considering only the
problem, not who might solve it – we presented the teachers
with the problem statement, requested that they read the
problem (and to not solve it), asked if they had any questions,
then asked them how informationally suitable each RS would
be. They then arranged the RS labels on the web form.

After all problems had been presented to the teachers, we
entered phase two: we asked the teachers to consider not just
the IS of an RS, but also how appropriate they would be for
students via the personas. The teachers then saw the same
problems in the same order, but for each they arranged them
based on how suitable the RS is for each persona. Once their
responses had been saved for Student A, they immediately did
the same problem for Student B. They completed all problems.

F. Interview

Following the two experimental phases, we conducted a
semi-structured interview guided by four questions:
1) Did you find this task difficult or easy, and how confident

are you in your answers?
2) How familiar were you with each representational system

before we started, on a scale from 1 to 10?
3) Which representational systems do you use while teaching,

and which are your ‘go-to’?
4) When answering our questions, what were the key factors

in making your decision?
The teachers were also given a short survey to collect demo-

graphic information: education, years of teaching experience,
recently taught courses, and the school at which they work.

IV. PARTICIPANTS AND PROCEDURE

Due to the COVID-19 pandemic, the experiment was con-
ducted via Zoom videoconference. The participants were high
school mathematics teachers in New Zealand. We advertised
by directly reaching out to the heads of faculty of high schools
in Canterbury. We recruited 10 teachers (3 male, 7 female)
from five schools; nine teachers returned usable quantitative
data – one set of data was corrupted. The participants’ teaching
experience ranged from two-and-a-half to sixteen years; all
have been mathematics teachers for all of their teaching career.
All have a bachelors degree, and a postgraduate diploma in
Teaching; the degree major varied. One participant has a PhD
in Statistics, while one has an MSc in Computer Science. One

teacher was studying for a Masters of Specialist Teaching. All
had taught courses that included probability within two years.

All participants were rewarded with an NZ$20 gift voucher.
This study received ethics approval from the University of

Cambridge Department of Computer Science and Technology.

A. Introducing the experiment
To open, we motivated this experiment: to understand how

teachers consider solving problems, both generally and for
students. We explained terms like ‘informational suitability’.

B. Training
The teachers were then given training as stated in Sec-

tion III-D. They consistently made three remarks:
• They were unfamiliar with AREA DIAGRAMS (but one had

seen eikosograms before, which are related [9]).
• They knew CONTINGENCY TABLES as ‘two-way tables’.
• They knew EULER DIAGRAMS as ‘Venn diagrams’; this name is

used by the NCEA standards documents for Euler diagrams.
This training period lasted about 30 minutes.

C. Representational systems without cognitive context
We presented each problem, and asked the teacher to read

it but not to solve it. The teacher was asked if they understood
the problem; all said yes. We then asked them to place the
RSs labels in the web form based on their IS.

D. Representational systems with cognitive context
After completing the evaluation task for each problem only

for IS, we presented the teachers with a PDF containing the
personas of the two students. They were asked to read the
personas, and we asked if they had any questions. One teacher
asked whether either student would be allowed a calculator
when solving these problems, and we confirmed with yes.
Another queried how strictly the low-ability student would
not use knowledge from other areas of mathematics, and we
confirmed that they had basic knowledge, but they would
not use skills beyond basic arithmetic without prompting.
Responses were recorded using the same interface.

E. Debrief and questions
To end, we asked the teachers our four follow-up questions,

and any questions that arose during the conversation. We
also invited them to complete a demographics survey. Finally,
we debriefed the teachers on some details of the experiment,
notably that the questions came in ‘pairs’ of the same problem
– no participant acknowledged noticing this.

V. QUANTITATIVE ANALYSIS

To make sense of the teachers’ responses, we break
down the data by problem and cognitive context. For each
⟨ problem, cognitive context ⟩ pair, we consider all of the
teachers’ responses. In this section, we explore two examples:
the lightbulbs-equivalent problem with a high-ability student
persona (⟨ 5/HF, high-ability ⟩), which shows clear groupings;
and the birds problem when considered without any persona
(⟨ 2/HV, no persona ⟩), which does not show clear groupings.
All statistical test results are included in Appendix C.
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(top) indicate between which RSs we find significant differences in rankings, when considering each ⟨problem, cognitive context⟩ pair.

A. Lightbulbs-equivalent problem for high-ability persona

The lightbulbs-equivalent problem is number 5/HF. We asked
the teachers to consider each RS, and evaluate them based on
their suitability for the high-ability student persona.

We plot the data in Fig. 2, focusing on the dark green box
plots (right-most within each RS). We note two things: first, the
BAYESIAN ALGEBRA distribution is visually much tighter than the
others – indicating more agreement between the teachers – and
also much higher – the teachers believed this representational
system to be generally more suitable for this problem, and this
student persona. This gives us what appears to be a ‘winner’:
for this problem and this student persona, the teachers would
consistently recommend BAYESIAN ALGEBRA. This seems to
support H1, in that the teachers have consistently identified
a representation to recommend. It then appears the teachers
would suggest (after BAYESIAN ALGEBRA) to use CONTINGENCY

TABLES, followed by PROBABILITY TREES, then EULER DIAGRAMS.
Second we see, in particular, AREA DIAGRAMS scores are spread
out – the teachers do not agree with each other. This was the
teachers’ least familiar RS.

Due to few scores, and their significant non-normal distribu-
tion, we converted the teachers’ responses (integers from 0 to
100) to ranks for each RS, preserving ties. Using these ranks,
we performed a Friedman test between the mean ranking of
each RS. For the problem and cognitive context described above
(⟨ 5/HF, high-ability ⟩), we find there is a significant difference
between the RS rankings (Q = 20.50, p = 0.0004 < 0.05).
Post-hoc Wilcoxon signed-rank tests between every pair of RSs
reveal two significant differences after Bonferroni correction:
between BAYESIAN ALGEBRA and EULER DIAGRAMS (W = 0,
p = 0.004 < 0.005) and between BAYESIAN ALGEBRA and
PROBABILITY TREES (W = 0, p = 0.004 < 0.005). Fig. 2
marks both with a connecting line. Thus we have evidence that
the teachers would recommend BAYESIAN ALGEBRA over EULER

DIAGRAMS and PROBABILITY TREES. While not a comprehensive
ranking, we have extracted a ranking from the teachers’
responses: tentative evidence for H1.

B. Birds problem without any persona

The birds problem is number 2/EV. As before, we plot the
teachers’ responses in Fig. 2, now focusing on the light grey

box plots (left-most for each RS). This time, any patterns are
less clear. The RSs’ scores are spread across the scale, with
none clearly being better or worse than the others. We might
state that EULER DIAGRAMS has higher scores, but this is not
conclusive. This time, there is no apparent ‘better’ RS.

After the transformation from scores to ranks, we performed
a Friedman test to determine if there is a significant difference
between the RS rankings. No significant difference was found
(Q = 7.75, p = 0.101), matching our visual intuition. Thus in
this case, we have no evidence supporting H1, that the teachers
were able to agree on the IS of each RS for the birds problem.
We made the assumption that the teachers are working from
a similar situation, knowledge, and experience; there may be
individual differences unaccounted for.

C. Other combinations

These two ⟨ problem, cognitive context ⟩ pairs are representa-
tive of the results from all twelve pairs. Fig. 2 shows connecting
lines between all pairs of RSs between which a post-hoc
Wilcoxon signed-rank test indicate a significant difference
in the teachers’ rankings (p < 0.005). In three further cases
– ⟨ 2/EV, high-ability persona ⟩, ⟨ 3/EF, low-ability persona ⟩,
and ⟨ 4/HV, IS ⟩ – the Friedman tests find a significant
difference between the teachers’ rankings, but post-hoc tests
failed to determine between which RSs the difference occurred.
Full results are in Appendix C.

Based on summarised results, in one quarter of cases there
is no evidence of a difference between each RS. In another
quarter, we found evidence that there might be a difference
in rankings between the RSs, but post-hoc tests were not
sensitive enough to determine the difference. But we note
that there is no consistency in the problems or cognitive
contexts in which we determine significant differences: both
the problem and the cognitive context seem to be influencing
the result. There is some consistency in three cases: in the
birds variants, problems 2/EV and 3/EF, for IS (in that there
were no significant preferences); in the ‘contextual’ problems
for low-ability learners (for favouring PROBABILITY TREES over
BAYESIAN ALGEBRA); and in the ‘equivalent’ problems for high
ability learners (for favouring BAYESIAN ALGEBRA over EULER

DIAGRAMS). However, three cases of significant differences



matching out of the twelve cases (and each case has ten possible
pairings) suggests that each case is being treated differently
by the teachers. Thus, for H2 and H3 we have evidence to
suggest that the teachers were considering both the problem
and cognitive context in their evaluation of each RS.

VI. QUALITATIVE ANALYSIS

In the debriefing interview we asked the four questions from
Section III-F. We asked the teachers how familiar they had
been with each RS prior to the training we provided. The
teachers were universally confident with PROBABILITY TREES,
CONTINGENCY TABLES, and EULER DIAGRAMS; two thirds were
comfortable with BAYESIAN ALGEBRA, but the rest had only
memories of having learned it before; none had seen AREA

DIAGRAMS before the study, but one third still felt they would
confidently be able to use the RS even before our training.

More than half of teachers initially answered that their re-
sponses were based on ‘gut instinct’ rather than external factors;
further discussion revealed influences from the curriculum
towards PROBABILITY TREES and CONTINGENCY TABLES.

The teachers also commented on a lack of training, in partic-
ular with respect to what one referred to as ‘rich task problem
solving’: using contexts, representations, and discussions to
improve mathematics learning [10]. This highlights a need for
teacher training and resources that allow for using more diverse
RSs, which could improve learning opportunities for students.

We asked the teachers if they had any ‘go-to’ RSs for prob-
ability. All responded either PROBABILITY TREES or CONTINGENCY

TABLES, half pointing out that these are encouraged by the
assessment standards. We notice these RSs were favoured by
our participants. Many said they were reluctant to use EULER

DIAGRAMS because they felt they were ‘too hard’ for students.
Based on these responses, we suspect that personal prefer-

ence and curriculum were factors in our participants’ responses.
We cannot directly untangle the link between curriculum and
preference: the teachers all work within the New Zealand
mathematics curriculum, so are most familiar with (and have
most experience with) the mandated RSs. A similar experiment
on a different cohort of teachers from multiple curricula could
identify if this influences the teachers’ responses.

The ‘equivalent’ problems may also have influenced our
participants: we had ‘contextual’ problems (birds, 2/EV, and
lightbulbs, 3/HV) and ‘context-less’ problems (3/EF and
5/HF) using letters as variables and a probability function.
These ‘context-less’ variants might have encouraged BAYESIAN

ALGEBRA, which also uses letters as variables and a probability
function. Indeed, we see this in Fig. 2: every situation where
BAYESIAN ALGEBRA is preferred is ‘context-less’. In future, we
suggest using ‘equivalent’ problems that retain context to avoid
the BAYESIAN ALGEBRA bias, but to use a different context.

We also cannot discount the possibility that this RS recom-
mendation task was difficult, even for experienced teachers
well-versed in the subject matter. As part of the debriefing
interview, we asked the teachers to self-assess how difficult they
found the evaluation task. Responses were split to extremes:
just under half responded that it was difficult, with the rest

responding that it was easy; there was no obvious relationship
between this response and years of experience. This binary split
on a self-assessment question suggests more work is needed
to determine what makes this task simple or difficult; or, we
need to find what assumptions some of the teachers might be
making that caused the task to be easier or more difficult.

Overall, we find that the teachers are only partially able to
produce a consistent recommendation of RSs. There are some
trends, but our participants did not consistently agree with each
other – against our initial hypotheses. The inconsistency, and
the teachers mentioning a lack of training in re-representation,
indicates that while teachers have an interest in learning about
teaching with multiple representations, this need is not being
met; in turn, this means that students may not be exposed to
the diversity of representations they could be.

VII. LIMITATIONS AND THREATS TO VALIDITY

Number of participants While nine participants provides
useful information, the power of the study is limited. We
provide interesting preliminary data, but both researchers
and practitioners would benefit from a larger study.

Population homogeneity We recruited our participants from
a limited set of schools in a geographically restricted
area. Participants were self-selected, likely knew each other
professionally, and shared an interest in representations in
education; this reduces the diversity of our participants. This
study was restricted to probability problems.

Mismatch of problems The initial problems and RSs selec-
tion was based on the English mathematics curriculum, but
due to the COVID-19 pandemic the study was adapted for
New Zealand. While some changes could be made quickly –
e.g., translating the GCSE/A-levels personas to the NZQA
framework – we could not make others because we did not
identify them ahead of time. One difference is the order and
age at which different RSs are introduced by each curriculum.
For example, in England, EULER DIAGRAMS1 are introduced at
Key Stages 3 and 4 [6], for students aged 11 to 14; in New
Zealand, EULER DIAGRAMS are introduced at NCEA Level
3 [5], for students aged 17 to 18. This likely caused the
teachers to associate EULER DIAGRAMS with difficult materials.

VIII. CONCLUSIONS

This study has provided valuable information about how
teachers evaluate RSs. We have found, contrary to H1, they
are not as consistent as we expect: teachers often fail to agree
with each other on the suitability of a particular RS. But
they are reacting to the situation in which they are making
a recommendation: the teachers’ responses support H2 (that
the problem is a factor in their evaluation) and H3 (that the
cognitive context is a factor in their evaluation). Further studies
are needed to determine the influence of these factors – and
potentially others – on the final recommendation. But we have
demonstrated a need, and desire, for more training on diverse
representation use. This may allow teachers and students to
unlock their problem solving potential.

1Both curricula refer to EULER DIAGRAMS as Venn diagrams.



A version of this paper without appendices has been
published at VL/HCC 2022.
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APPENDIX A
EXAMPLES OF REPRESENTATIONAL SYSTEMS

Figure 3 gives examples of all five RSs we considered in
this experiment.

X

Y

Z

A B

0.2

0.5

0.3

1.0

0.4 0.6

0.6̄ 0.3̄

Pr(X) = 0.2 Pr(A ∩X) = 0.2

Pr(Y ) = 0.5 Pr(A ∩ Y ) = 0.2

Pr(Z) = 0.3 Pr(A ∩ Z) = 0.2

Pr(X) + Pr(Y ) + Pr(Z) = 1

Pr(A) + Pr(B) = 1
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X Y Z Total

A 0.2 0.2 0.2 0.6
B 0.0 0.3 0.1 0.4

Total 0.2 0.5 0.3 1.0
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Fig. 3. (a) A probability tree, (b) a contingency table, (c) an area diagram,
(d) an Euler diagram, and (e) five Bayesian algebra equations. Representations
are (near) equivalent in describing events A, B, X , Y , and Z.

APPENDIX B
STUDENT PERSONAS

Student A is 15 years old, and in Year 11. They are
able to add and subtract well but are less confident with
multiplication and division. They can perform one or two
steps independently if they have seen them done before,
but problems that require more steps to solve will leave
them unable to start. They cannot use knowledge from
other areas of mathematics; they only use skills they have
learned in probability to solve probability problems.

Student B is 17 years old, and in Year 13. They are confident
with addition, subtraction, multiplication, and division. They
can solve problems that require many steps and are willing
to try steps they have not explicitly seen demonstrated
before. The student is able to combine knowledge from
across mathematics to solve their current problem.

APPENDIX C
SUMMARY TABLES OF TEACHER’S RESPONSES STATISTICS

The following tables summarise the analysis of the responses
from the teachers who participated in the evaluation. These
tables form part of the analysis in Section V.

In the Friedman test tables, the final column contains an
asterisk if the p-value is below 0.05, indicating we should pur-
sue post-hoc tests. If a context exhibits significant differences,

Wilcoxon post-hoc tests were conducted. In the Wilcoxon
test tables, the final column contains an asterisk if the p-
value is below 0.005, which is the significance threshold after
Bonferroni correction.

A. Birds problem

FRIEDMAN TESTS
Context Friedman Q p

No persona 5.03 0.284
Low ability 11.29 0.024 *
High ability 11.01 0.027 *

WILCOXON TESTS, LOW ABILITY

Representational Systems Wilcoxon W p

Areas Bayes 10.5 0.164
Areas Contingency 15.5 0.719
Areas Euler 14.0 0.570
Areas Trees 5.0 0.067

Bayes Contingency 9.0 0.129
Bayes Euler 8.5 0.129
Bayes Trees 0.0 0.004 *

Contingency Euler 17.5 0.944
Contingency Trees 7.0 0.121

Euler Trees 10.0 0.164

WILCOXON TESTS, HIGH ABILITY

Representational Systems Wilcoxon W p

Areas Bayes 21.5 0.910
Areas Contingency 5.0 0.039
Areas Euler 16.0 0.496
Areas Trees 2.0 0.012

Bayes Contingency 8.5 0.129
Bayes Euler 14.5 0.618
Bayes Trees 6.5 0.074

Contingency Euler 13.5 0.301
Contingency Trees 9.0 0.389

Euler Trees 6.0 0.055

B. Birds-equivalent problem

FRIEDMAN TESTS
Context Friedman Q p

No persona 7.75 0.101
Low ability 9.98 0.041 *
High ability 18.18 0.001 *

WILCOXON TESTS, LOW ABILITY

Representational Systems Wilcoxon W p

Areas Bayes 10.5 0.285
Areas Contingency 11.0 0.203
Areas Euler 4.5 0.102
Areas Trees 15.5 0.722

Bayes Contingency 8.0 0.098
Bayes Euler 13.5 0.518
Bayes Trees 11.5 0.359

Contingency Euler 3.5 0.020
Contingency Trees 6.5 0.105

Euler Trees 7.0 0.119



WILCOXON TESTS, HIGH ABILITY

Representational Systems Wilcoxon W p

Areas Bayes 2.0 0.012
Areas Contingency 2.0 0.012
Areas Euler 15.0 0.669
Areas Trees 10.5 0.286

Bayes Contingency 10.5 0.164
Bayes Euler 0.0 0.004 *
Bayes Trees 2.5 0.012

Contingency Euler 0.0 0.011
Contingency Trees 7.5 0.136

Euler Trees 10.0 0.164

C. Lightbulbs problem

FRIEDMAN TESTS
Context Friedman Q p

No persona 12.02 0.017 *
Low ability 22.01 0.000 *
High ability 20.83 0.000 *

WILCOXON TESTS, NO PERSONA

Representational Systems Wilcoxon W p

Areas Bayes 13.0 0.478
Areas Contingency 9.0 0.203
Areas Euler 7.0 0.120
Areas Trees 3.0 0.035

Bayes Contingency 15.0 0.670
Bayes Euler 6.5 0.055
Bayes Trees 9.5 0.231

Contingency Euler 2.5 0.012
Contingency Trees 5.5 0.143

Euler Trees 4.5 0.039

WILCOXON TESTS, LOW ABILITY

Representational Systems Wilcoxon W p

Areas Bayes 3.0 0.031
Areas Contingency 4.0 0.048
Areas Euler 22.0 1.00
Areas Trees 4.5 0.039

Bayes Contingency 0.0 0.011
Bayes Euler 3.0 0.020
Bayes Trees 0.0 0.004 *

Contingency Euler 7.0 0.074
Contingency Trees 9.5 0.222

Euler Trees 2.0 0.012

WILCOXON TESTS, HIGH ABILITY

Representational Systems Wilcoxon W p

Areas Bayes 6.5 0.074
Areas Contingency 3.0 0.034
Areas Euler 21.5 1.00
Areas Trees 0.0 0.004 *

Bayes Contingency 21.5 1.00
Bayes Euler 5.0 0.039
Bayes Trees 2.5 0.020

Contingency Euler 7.0 0.074
Contingency Trees 2.5 0.028

Euler Trees 0.0 0.004 *

D. Lightbulbs-equivalent problem

FRIEDMAN TESTS
Context Friedman Q p

No persona 16.02 0.003 *
Low ability 7.43 0.115
High ability 20.50 0.000 *

WILCOXON TESTS, NO PERSONA

Representational Systems Wilcoxon W p

Areas Bayes 1.0 0.008
Areas Contingency 0.0 0.004 *
Areas Euler 12.5 0.301
Areas Trees 5.0 0.039

Bayes Contingency 9.0 0.129
Bayes Euler 4.0 0.027
Bayes Trees 8.0 0.098

Contingency Euler 8.5 0.098
Contingency Trees 11.0 0.319

Euler Trees 17.0 0.570

WILCOXON TESTS, HIGH ABILITY

Representational Systems Wilcoxon W p

Areas Bayes 1.5 0.012
Areas Contingency 4.5 0.055
Areas Euler 16.0 0.774
Areas Trees 17.5 0.943

Bayes Contingency 3.5 0.034
Bayes Euler 0.0 0.004 *
Bayes Trees 0.0 0.004 *

Contingency Euler 3.0 0.034
Contingency Trees 2.5 0.028

Euler Trees 14.5 0.608

APPENDIX D
REPRESENTATIONAL SYSTEM TRAINING RESOURCES

The following pages are direct copies of the training material
given to participants during our experiment.

The documents are included verbatim from the study; errors
present here were also present in versions shown to participants.
In particular, the AREA DIAGRAMS information sheet incorrectly
states in the second example that ‘three of the five even numbers



are prime’ – three of the five odd numbers are prime, not even.
A few participants did pick up on this, and correctly inferred
the mistake. Many did not pick up on our error: we believe
they implicitly understood the intended meaning.

The example also required the participants to have general
knowledge about integers and playing cards; they all had no
problem understanding the examples as given.



Representation – Area diagrams 

Summary 
An area diagram is a unit square representing all possible outcomes, with labels for events, 
their split length representing the probability of each event. Labels might use “not” (¬) 
The area enclosed by lines represents the probability X and Y together, where X and Y are 
the edge labels. Areas can be added together to find A or B, where A and B are areas. 
The order of the events and factors is not meaningful. 

Examples 
1. 

 

In a deck of cards, half are red, and 
half are black. No red cards are 
clubs. Half the black cards are clubs. 

2. 

 

Of the numbers between 1 and 10, 
half are even, and half are odd. One 
of the five even numbers is prime. 
Three of the five even numbers are 
prime.  
Thus 40% numbers are prime. 

3. 

 

Counters are 20% white, 30% black, 
and 50% red. On one side they have 
a cross, and the other they have a 
circle, with an even chance of being 
either side. 
The probability of a white counter 
showing a cross is 10%. 

4. 

 

The probability of A is 30%. The 
probability of B given A is 75%, but 
only 30% given not A. 
Thus, the probability of A and not B is 
7.5%. 
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Representation – Bayesian algebra 

Summary 
Bayesian algebra consists of numbers, letters, and words, which are combined using 
standard mathematical operations (+, −, ×, ÷) and probability functions P(𝑥) and P(𝑥|𝑦) 
which map events numbers between 0 and 1. Symbols or “and”, “or”, and “not” (∩, ∪,¬) are 
used to combine events.  
Progress is made by rewriting equations through applying operations, simplifying equations, 
and rearranging terms. 
The size and absolute position of equations have no meaning. 

Examples 
1. 

 

In a deck of cards, half are red, 
and one quarter are clubs. If the 
card is red then it cannot be a 
club. 

2. 

 

Let 𝑈 be the set of integers from 
1 to 10. Let 𝐸 be the event that 
a number from 𝑈 is even and let 
𝑃 be the event that a number 
from 𝑈 is prime. The probability 
that a number from 𝑈 is both 
prime and even is 0.1. Then the 
probability that a number in 𝑈 is 
prime given that it is even is 
0.2.  

3. 

 

The probability of M is 0.92, and 
N is 0.24. Given N, the 
probability of M becomes 0.75. 
Thus the probability of both M 
and N is 0.18. 

4. 

 

The cat will meow if it is hungry 
90% of the time. The cat is 
hungry 10% of the time, and the 
cat meows 15% of the time. 
Thus, the probability that the cat 
is hungry given that it is 
meowing is 60%. 

 



Representation – Contingency tables 

Summary 
A contingency table is a grid where the first row and column are reserved for labels, which 
(along each axis) are mutually exclusive but together are all possible outcomes. Labels may 
use the symbol “not” (¬). 
The final row and column contain numbers which must be the sum of the numbers in their 
own (completely filled) row/column. The value in the final cell is always 1. 
Inner cells are filled with real values between 0 and 1, and represent the probability of X 
and Y, assuming labels X and Y align with that cell.  
The size of the cells has no meaning.  

Examples 
1.  Red Black Total 

Club 0.0 0.25 0.25 
¬Club 0.5 0.25 0.75 
Total 0.5 0.5 1 

  

From a deck of cards, the probability 
of being red and a club is 0, red and 
not a club is 0.5, black and a club is 
0.25, and black and not a club is 
0.25. 

2.  Even Odd Total 
Prime 0.1 0.3 0.4 

¬Prime 0.4 0.2 0.6 
Total 0.5 0.5 1 

 

For the numbers from 1 to 10, the 
probability of a number being even 
and prime is 0.1, even and not prime 
is 0.4, odd and prime is 0.3, and odd 
and not prime is 0.2. 

3.  X ¬X Total 
Y 0.18 0.22 0.4 

¬Y 0.27 0.33 0.6 
Total 0.45 0.55 1 

 

The probability of X and Y is 0.18, X 
and not Y is 0.27, not X and Y is 0.22, 
and not X and not Y is 0.33. 

4.  Young Mid Old Total 
Vote 0.08 0.27 0.25 0.6 

¬Vote 0.12 0.23 0.05 0.4 
Total 0.2 0.5 0.3 1 

 

From a population, the probability of a 
citizen being young and voting is 
0.08, young and not voting is 0.12, 
middle aged and voting is 0.27, 
middle aged and not voting is 0.23, 
old and voting is 0.25, and old and 
not voting is 0.05. 

 



Representation – Euler diagrams 

Summary 
Euler diagrams consist of a “universe” denoted by a rectangle, and ellipses representing 
events. Events are named with letters or words.  
The region inside the curve represents events occuring. Regions inside two curves 
represent X and Y occuring simultaneously. Regions that do not overlap are disjoint. 
The size or shape of the curves are not meaningful. 

Examples 
1. 

 

Some cards are red. Some cards are 
clubs. No card is a red club. 

2. 

 

There are even numbers. There are 
prime numbers. There are even and 
prime numbers. 

3. 

 

Some (but not all) As are Cs, and 
some (but not all) Cs are As. All Bs 
are As, and some (but not all) Bs are 
also Cs. Some (but not all) Ds are Cs, 
but no D is also an A. 

4. 

 

All mammals are animals, but not all 
animals are mammals. Some 
mammals live in water, but some do 
not; some animals live in water, but 
some do not. Some things that live in 
water are not animals. 

 



Representation – Probability trees 

Summary 
Probability trees consists of events and branches. Events sometimes use a “not” symbol 
(¬). Each event has exactly one “prevous” event, except for the first event which has no 
previous. Branches are labelled with the probability of the next event occuring given that the 
previous event has occurred. The sum of adjacent branches must be 1. 
X and Y is computed by multiplying along branches; X or Y by adding between branches.  
Neither the length of branches nor the order of adjacent events is meaningful. 

Examples 
1. 

 

Half of the cards in a deck are red, 
the other half are black. No red card 
is a club, but half the black cards are 
a club. The total probability of getting 
a club is ¼. 

2. 

 

For the numbers from 1 to 10, half of 
the numbers are even. One of the five 
even numbers is prime. Three of the 
five even numbers are prime. The 
total probability of a number between 
1 and 10 being prime is 0.4. 

3. 

 

The probability of P1 is 10%, P2 is 
25%, and the remaining Ps together 
have probability 65%. If P1 is true, 
then Q has probability 60%, whereas 
given P2 Q has probability 40%. 
Otherwise, Q has probability 20%. 

4.  

 

Toss three coins, each with a 50% 
chance of begin heads or tails. The 
probability of getting all heads or all 
tails is 25%. 
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